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1 Definition of multivariate Gaussian function [1]

Definition 1.1 The multivariate Gaussian function G(x; p, X) is defined by
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where p is mean, X is covariance matriz, and D is dimension of x.

2 Product of multivariate Gaussian function

Lemma 2.1

(@ —p) " E7 (@ — 1) + (2 — p2) B (@ — p2) =

(@-—m)"'S™ w—m)+ (1 — p2)" (1 + M (g1 — ), (2)
where
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Proof 2.1 Assuming Eq. (2) is true, we will derive S, m, and M. The left hand side of Eq. (2) is
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The right hand side of Eq. (2) is
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Comparing coefficients of x in Eqs. (6) and (7), we have
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Stmo= Tt + 2 e (9)

Eq. (9) can be easily rewritten as
m = S(E T+ ). (10)

The constant term in Egs. (6) and (7) can be rewritten as
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Comparing coefficients of w1 and po in Eq. (11), we have
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From Eq. (14), we have
M = 3,87'%, = (T, '+ 2,08 = 3+ %, (16)
We can also derive same properties from Eq. (15). Egs. (8), (10), and (16) show the lemma 2.1.
Proposition 2.2 The product of two Gaussian functions G(x; p1,X1) and G(x; p2, Xo) can be expressed as
G(m; M1, El) X G(ma M2, 22)
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Proof 2.2 We can easity derive the proposition using the lemma 2.1.
Proposition 2.3 The inner product between G(x; p1,%1) and G(x; pa, X2) can be calcuated by
< Gloim, B0, Glaine D) > = [ Glaimn, 22, Glaspa, B) da
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3 KL-divergence of multivariate Gaussian function [1]
The KL-divergence of p(z) with respect to ¢(x) is defined by [3]
p(x
Dino@la@) = [ peyoghDdr. (19)
q(x)
The KL-divergence of G(x; po, Xo) with respect to G(x; p1, 1) can be calculated by
: . _ 1 -1 T—1 | X0
Dk (G(z; po, Xo)|G(x; 1, X)) = 3 tr(X; " Xo) + (1 — o) X1 (1 — po) — logm -D|.
(20)

4 Bhattacharyya and Hellinger distance of multivariate Gaussian func-
tion [2]

The Bhattacharyya coefficent between p(z) and ¢(z) is defined by [2]

BC(.q) = / Vr@a(@)dz. (21)

Using the Bhattacharyya coefficent BC(p,q), the Bhattacharyya distance Dg(p,q) and the Hellinger distance
Du(p,q) can be defined by [2]

Dp(p,q) = —log(BC(p,q)), (22)
Du(p,q) = 1-BC(p,q). (23)



For two multivariate normal distribution of G(x; o, o) and G(x; p1,X1),
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